Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(-h_{6}-1/2h_{5}+1/2h_{3}+h_{1}\) | \(g_{24}+3/4g_{14}+3/4g_{13}\) | \(g_{5}+4/3g_{4}+g_{3}\) | \(g_{36}\) | \(g_{31}\) | \(g_{29}\) | \(g_{15}\) | \(g_{35}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(6\omega_{1}\) | \(3\omega_{1}+3\omega_{2}\) | \(3\omega_{1}+3\omega_{2}\) | \(6\omega_{2}\) | \(4\omega_{1}+4\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(6\omega_{1}\) | \(3\omega_{1}+3\omega_{2}-6\psi\) | \(3\omega_{1}+3\omega_{2}+6\psi\) | \(6\omega_{2}\) | \(4\omega_{1}+4\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | \(\displaystyle V_{3\omega_{1}+3\omega_{2}-6\psi} \) → (3, 3, -6) | \(\displaystyle V_{3\omega_{1}+3\omega_{2}+6\psi} \) → (3, 3, 6) | \(\displaystyle V_{6\omega_{2}} \) → (0, 6, 0) | \(\displaystyle V_{4\omega_{1}+4\omega_{2}} \) → (4, 4, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(3\omega_{1}+3\omega_{2}\) \(\omega_{1}+3\omega_{2}\) \(3\omega_{1}+\omega_{2}\) \(-\omega_{1}+3\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(3\omega_{1}-3\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(\omega_{1}-3\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) \(-\omega_{1}-3\omega_{2}\) \(-3\omega_{1}-3\omega_{2}\) | \(3\omega_{1}+3\omega_{2}\) \(\omega_{1}+3\omega_{2}\) \(3\omega_{1}+\omega_{2}\) \(-\omega_{1}+3\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(3\omega_{1}-3\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(\omega_{1}-3\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) \(-\omega_{1}-3\omega_{2}\) \(-3\omega_{1}-3\omega_{2}\) | \(6\omega_{2}\) \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) \(-6\omega_{2}\) | \(4\omega_{1}+4\omega_{2}\) \(2\omega_{1}+4\omega_{2}\) \(4\omega_{1}+2\omega_{2}\) \(4\omega_{2}\) \(2\omega_{1}+2\omega_{2}\) \(4\omega_{1}\) \(-2\omega_{1}+4\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(4\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+4\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(4\omega_{1}-4\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-4\omega_{1}\) \(-2\omega_{1}-2\omega_{2}\) \(-4\omega_{2}\) \(-4\omega_{1}-2\omega_{2}\) \(-2\omega_{1}-4\omega_{2}\) \(-4\omega_{1}-4\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(3\omega_{1}+3\omega_{2}-6\psi\) \(\omega_{1}+3\omega_{2}-6\psi\) \(3\omega_{1}+\omega_{2}-6\psi\) \(-\omega_{1}+3\omega_{2}-6\psi\) \(\omega_{1}+\omega_{2}-6\psi\) \(3\omega_{1}-\omega_{2}-6\psi\) \(-3\omega_{1}+3\omega_{2}-6\psi\) \(-\omega_{1}+\omega_{2}-6\psi\) \(\omega_{1}-\omega_{2}-6\psi\) \(3\omega_{1}-3\omega_{2}-6\psi\) \(-3\omega_{1}+\omega_{2}-6\psi\) \(-\omega_{1}-\omega_{2}-6\psi\) \(\omega_{1}-3\omega_{2}-6\psi\) \(-3\omega_{1}-\omega_{2}-6\psi\) \(-\omega_{1}-3\omega_{2}-6\psi\) \(-3\omega_{1}-3\omega_{2}-6\psi\) | \(3\omega_{1}+3\omega_{2}+6\psi\) \(\omega_{1}+3\omega_{2}+6\psi\) \(3\omega_{1}+\omega_{2}+6\psi\) \(-\omega_{1}+3\omega_{2}+6\psi\) \(\omega_{1}+\omega_{2}+6\psi\) \(3\omega_{1}-\omega_{2}+6\psi\) \(-3\omega_{1}+3\omega_{2}+6\psi\) \(-\omega_{1}+\omega_{2}+6\psi\) \(\omega_{1}-\omega_{2}+6\psi\) \(3\omega_{1}-3\omega_{2}+6\psi\) \(-3\omega_{1}+\omega_{2}+6\psi\) \(-\omega_{1}-\omega_{2}+6\psi\) \(\omega_{1}-3\omega_{2}+6\psi\) \(-3\omega_{1}-\omega_{2}+6\psi\) \(-\omega_{1}-3\omega_{2}+6\psi\) \(-3\omega_{1}-3\omega_{2}+6\psi\) | \(6\omega_{2}\) \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) \(-6\omega_{2}\) | \(4\omega_{1}+4\omega_{2}\) \(2\omega_{1}+4\omega_{2}\) \(4\omega_{1}+2\omega_{2}\) \(4\omega_{2}\) \(2\omega_{1}+2\omega_{2}\) \(4\omega_{1}\) \(-2\omega_{1}+4\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(4\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+4\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(4\omega_{1}-4\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-4\omega_{1}\) \(-2\omega_{1}-2\omega_{2}\) \(-4\omega_{2}\) \(-4\omega_{1}-2\omega_{2}\) \(-2\omega_{1}-4\omega_{2}\) \(-4\omega_{1}-4\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}+3\omega_{2}-6\psi}\oplus M_{\omega_{1}+3\omega_{2}-6\psi}\oplus M_{3\omega_{1}+\omega_{2}-6\psi}\oplus M_{-\omega_{1}+3\omega_{2}-6\psi} \oplus M_{\omega_{1}+\omega_{2}-6\psi}\oplus M_{3\omega_{1}-\omega_{2}-6\psi}\oplus M_{-3\omega_{1}+3\omega_{2}-6\psi}\oplus M_{-\omega_{1}+\omega_{2}-6\psi} \oplus M_{\omega_{1}-\omega_{2}-6\psi}\oplus M_{3\omega_{1}-3\omega_{2}-6\psi}\oplus M_{-3\omega_{1}+\omega_{2}-6\psi}\oplus M_{-\omega_{1}-\omega_{2}-6\psi} \oplus M_{\omega_{1}-3\omega_{2}-6\psi}\oplus M_{-3\omega_{1}-\omega_{2}-6\psi}\oplus M_{-\omega_{1}-3\omega_{2}-6\psi}\oplus M_{-3\omega_{1}-3\omega_{2}-6\psi}\) | \(\displaystyle M_{3\omega_{1}+3\omega_{2}+6\psi}\oplus M_{\omega_{1}+3\omega_{2}+6\psi}\oplus M_{3\omega_{1}+\omega_{2}+6\psi}\oplus M_{-\omega_{1}+3\omega_{2}+6\psi} \oplus M_{\omega_{1}+\omega_{2}+6\psi}\oplus M_{3\omega_{1}-\omega_{2}+6\psi}\oplus M_{-3\omega_{1}+3\omega_{2}+6\psi}\oplus M_{-\omega_{1}+\omega_{2}+6\psi} \oplus M_{\omega_{1}-\omega_{2}+6\psi}\oplus M_{3\omega_{1}-3\omega_{2}+6\psi}\oplus M_{-3\omega_{1}+\omega_{2}+6\psi}\oplus M_{-\omega_{1}-\omega_{2}+6\psi} \oplus M_{\omega_{1}-3\omega_{2}+6\psi}\oplus M_{-3\omega_{1}-\omega_{2}+6\psi}\oplus M_{-\omega_{1}-3\omega_{2}+6\psi}\oplus M_{-3\omega_{1}-3\omega_{2}+6\psi}\) | \(\displaystyle M_{6\omega_{2}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\oplus M_{-6\omega_{2}}\) | \(\displaystyle M_{4\omega_{1}+4\omega_{2}}\oplus M_{2\omega_{1}+4\omega_{2}}\oplus M_{4\omega_{1}+2\omega_{2}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{1}+2\omega_{2}} \oplus M_{4\omega_{1}}\oplus M_{-2\omega_{1}+4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+4\omega_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{4\omega_{1}-4\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}} \oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}}\oplus M_{-4\omega_{1}}\oplus M_{-2\omega_{1}-2\omega_{2}} \oplus M_{-4\omega_{2}}\oplus M_{-4\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}-4\omega_{2}}\oplus M_{-4\omega_{1}-4\omega_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}+3\omega_{2}-6\psi}\oplus M_{\omega_{1}+3\omega_{2}-6\psi}\oplus M_{3\omega_{1}+\omega_{2}-6\psi}\oplus M_{-\omega_{1}+3\omega_{2}-6\psi} \oplus M_{\omega_{1}+\omega_{2}-6\psi}\oplus M_{3\omega_{1}-\omega_{2}-6\psi}\oplus M_{-3\omega_{1}+3\omega_{2}-6\psi}\oplus M_{-\omega_{1}+\omega_{2}-6\psi} \oplus M_{\omega_{1}-\omega_{2}-6\psi}\oplus M_{3\omega_{1}-3\omega_{2}-6\psi}\oplus M_{-3\omega_{1}+\omega_{2}-6\psi}\oplus M_{-\omega_{1}-\omega_{2}-6\psi} \oplus M_{\omega_{1}-3\omega_{2}-6\psi}\oplus M_{-3\omega_{1}-\omega_{2}-6\psi}\oplus M_{-\omega_{1}-3\omega_{2}-6\psi}\oplus M_{-3\omega_{1}-3\omega_{2}-6\psi}\) | \(\displaystyle M_{3\omega_{1}+3\omega_{2}+6\psi}\oplus M_{\omega_{1}+3\omega_{2}+6\psi}\oplus M_{3\omega_{1}+\omega_{2}+6\psi}\oplus M_{-\omega_{1}+3\omega_{2}+6\psi} \oplus M_{\omega_{1}+\omega_{2}+6\psi}\oplus M_{3\omega_{1}-\omega_{2}+6\psi}\oplus M_{-3\omega_{1}+3\omega_{2}+6\psi}\oplus M_{-\omega_{1}+\omega_{2}+6\psi} \oplus M_{\omega_{1}-\omega_{2}+6\psi}\oplus M_{3\omega_{1}-3\omega_{2}+6\psi}\oplus M_{-3\omega_{1}+\omega_{2}+6\psi}\oplus M_{-\omega_{1}-\omega_{2}+6\psi} \oplus M_{\omega_{1}-3\omega_{2}+6\psi}\oplus M_{-3\omega_{1}-\omega_{2}+6\psi}\oplus M_{-\omega_{1}-3\omega_{2}+6\psi}\oplus M_{-3\omega_{1}-3\omega_{2}+6\psi}\) | \(\displaystyle M_{6\omega_{2}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\oplus M_{-6\omega_{2}}\) | \(\displaystyle M_{4\omega_{1}+4\omega_{2}}\oplus M_{2\omega_{1}+4\omega_{2}}\oplus M_{4\omega_{1}+2\omega_{2}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{1}+2\omega_{2}} \oplus M_{4\omega_{1}}\oplus M_{-2\omega_{1}+4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+4\omega_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{4\omega_{1}-4\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}} \oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}}\oplus M_{-4\omega_{1}}\oplus M_{-2\omega_{1}-2\omega_{2}} \oplus M_{-4\omega_{2}}\oplus M_{-4\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}-4\omega_{2}}\oplus M_{-4\omega_{1}-4\omega_{2}}\) |
2 & | 0\\ |
0 & | 2\\ |